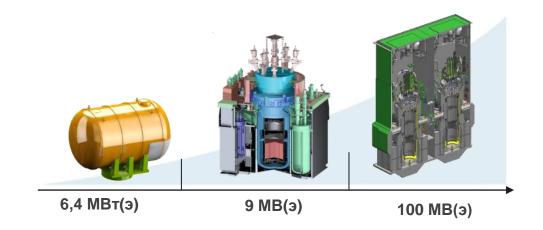
Акционерное общество «Русатом Энерго Интершешнл»

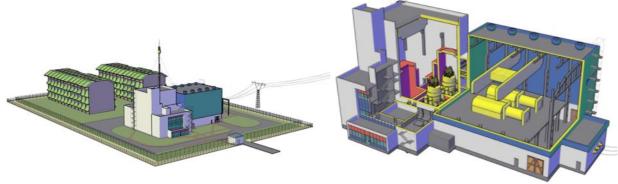
Атомные станции малой мощности (ACMM) – Новое продуктовое предложение ГК «Росатом»

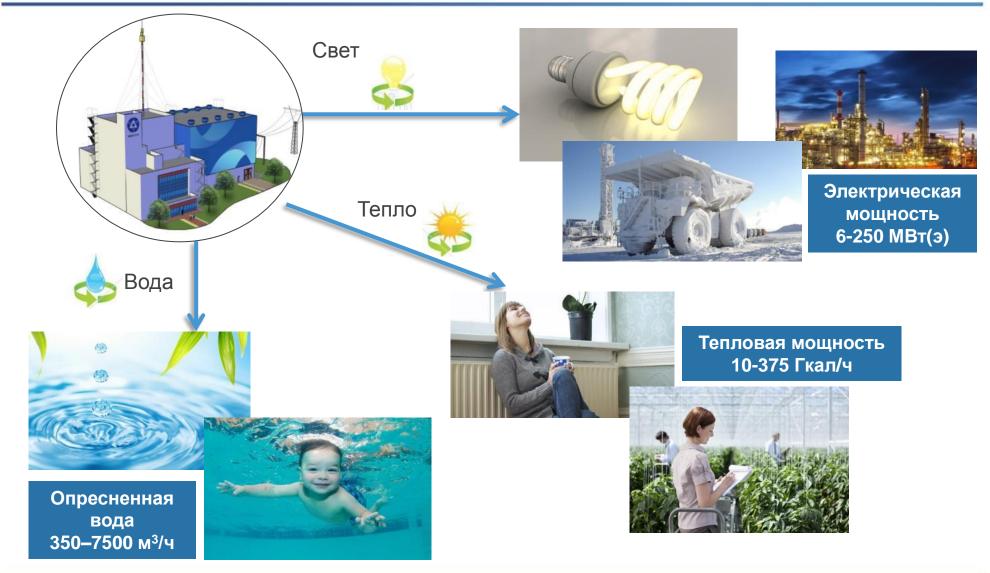
Егоров Сергей

Заместитель генерального директора по инжинирингу АО «Русатом Энерго Интернешнл»


7 апреля, 2016 Санкт-Петербург

Реальные решения для рынка АСММ




АСММ российского проекта основаны на безопасной эксплуатации проверенных временем реакторов типа ВВЭР

Возможности / полезные продукты АСММ

Высокий уровень безопасности

ПРИНЦИП ГЛУБОКОЭШЕЛОНИРОВАННОЙ ЗАЩИТЫ

Этот принцип предусматривает применение системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и системы технических и организационных мер по защите барьеров и сохранению их эффективности и непосредственно по защите населения. Система барьеров включает:

- топливную матрицу,
- оболочку ТВЭЛ,
- границу контура теплоносителя реактора,
- герметичное ограждение локализующих систем безопасности.

Концепция максимального учёта внешних воздействий

Шторм, торнадо И песчаные бури

Падение самолёта До 400 тонн

СИСТЕМА ТЕХНИЧЕСКИХ И ОРГАНИЗАЦИОННЫХ МЕР

Первый уровень:

- консервативный проект, основанный на использовании современных норм;
- обеспечение качества на всех стадиях создания АС;
- контроль состояния барьеров безопасности при эксплуатации;
- культура безопасности.

Второй уровень:

 управление при нарушениях эксплуатации и выявлениие отказов (защиты и блокировки, резервные механизмы нормальной эксплуатации)

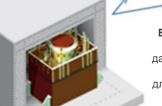
Третий уровень:

 защитные, управляющие, локализующие и обеспечивающие системы безопасности, предотвращающие развития отказов в проектные аварии, а проектных аварий в запроектные аварии.

Четвертый уровень:

- управление аварией, включая защиту локализующих функций.

Пятый уровень:


 противоаварийные меры вне площадки с целью ослабления последствий выброса радиоактивных продуктов во внешнюю среду.

Ветровая нагрузка

Влияние экстремальных температур

Воздействие взрывной Волны

давление во фронте волны до 120 кПа длительность фазы сжатия до 1 сек

Максимальное расчётное землетрясение 9 баллов горизонтальное ускорение у земли до 2g

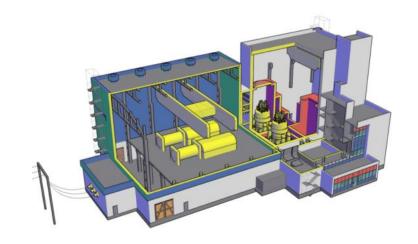
Эксплуатационный опыт

Более 260 судов с ядерной установкой были построены в России. Опыт эксплуатации ядерных энергетических установок превышает 7000 реакторо-часов

Конкурентоспособные экономические показатели*

*Показатели зависят от региона размещения

Параметр	АБВ-6 9 МВт	Шельф 6,4 МВт	45 МВт (РИТМ-200)	225 МВт (Кластер 5 АСММ с РУ РИТМ-200)
NPV, млн \$	20,2	14,7	196	1350
IRR, %	16,2	15,5	20	23
Период окупаемости, лет	12	15	10	9
LCOE real*, C/кВт*ч (ставка дисконт. 10%)	22	25	14	12
LCOE nominal**, C/кВт*ч (ставка дисконт. 10%)	37	39	22	19
САРЕХ, млн \$	60,4	48,1	215,3	1015
ОРЕХ, млн \$/год	5,2	4,5	11,7	48,7
Удельные кап. вложения, \$/кВт (э)	≥ 7 000	≥ 7 500	≥ 4 800	≥ 4 500


^{*)} real – неэскалированные расходы; **) nominal – эскалированные расходы

Примеры производственных решений (1)

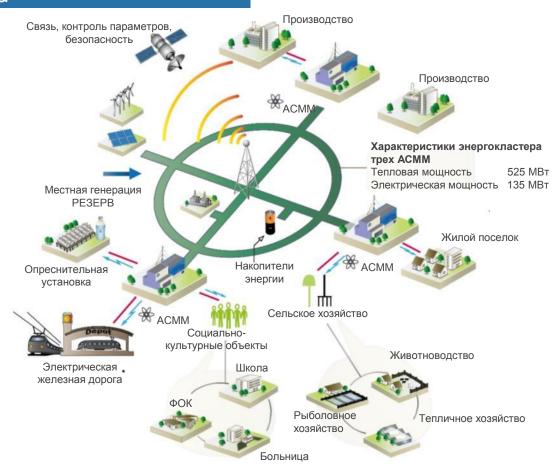
АСММ с производством электроэнергии

Компоновочное решение с двумя реакторными установками РИТМ-200 и двумя турбинами ПТ-50. Мощность в конденсационном режиме до 100 МВт(е), тепловая мощность в тепловом режиме 150 Гкал/ч

В случае нехватки воды используются градирни

Примеры производственных решений (2)

АСММ с опреснительной установкой


Примеры производственных решений (3)

Энергетический кластер для освоения территории на базе ACMM и технологии SmartGrid

ПРЕИМУЩЕСТВА

- Надёжность, устойчивость сети;
- Качество энергоснабжения;
- Возможность подключения новых потребителей и источников генерации;
- Синхронная работа источников генерации и узлов хранения и потребления энергии;
- Сокращение воздействия на окружающую среду;
- Повышение уровня жизни и перспективы освоения территории

^{*} Информация представлена для кластера на базе 5 АСММ с РУ РИТМ-200

Сотрудничество в сооружении АСММ

Промкооперация при изготовлении оборудования ДЦИ

Турбинное отделение

Комплексное

устройство

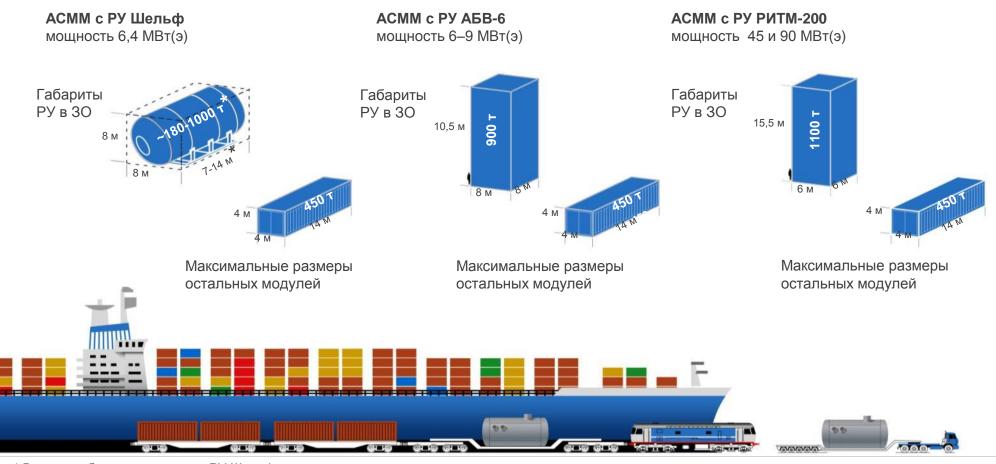
распределительное

Реакторное отделение

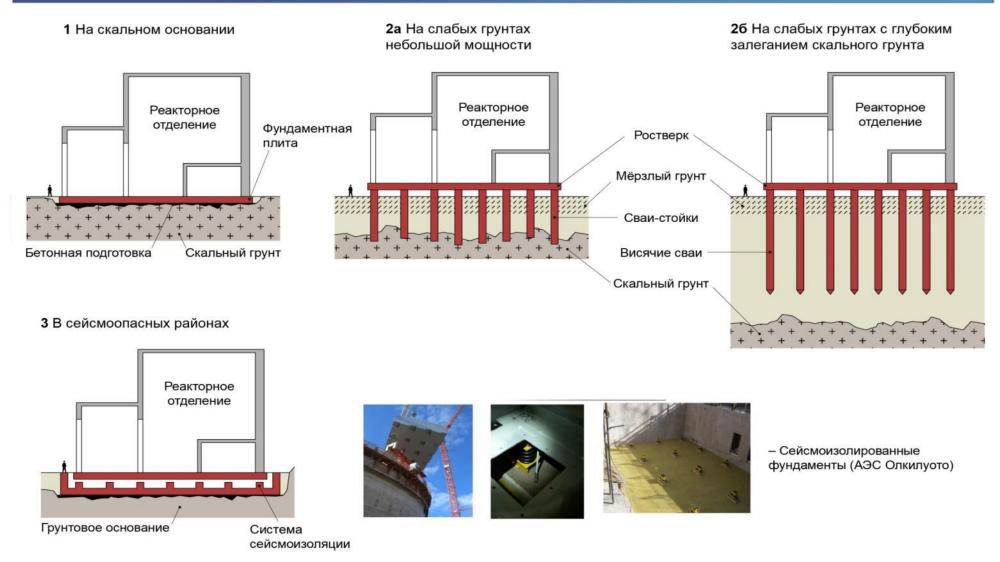
По проведенным маркетинговым исследованиям:

Окно возможностей формирования рынка АСММ: 2015-2023 гг.

Потребности в АСММ на Мировом рынке: 80 блоков до 2030 г.


Задача: Наращивания производительных мощностей, промкоопераций

Логистика крупных модулей


Основные транспортируемые модули: РУ в защитной оболочке (30), турбинная установка, резервный дизельгенератор, строительные материалы, стандартизированное оборудование.

^{*} Веса и габаритные размеры РУ Шельф варьируются в зависимости от исполнения

Варианты исполнения фундаментных оснований в зависимости от условий размещения

СПАСИБО ЗА ВНИМАНИЕ!