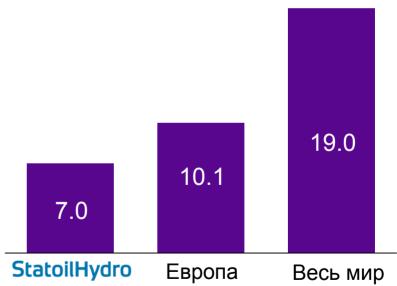
Улавливание и хранение углекислого газа (CCS): наилучшие доступные технологии, текущие проекты и глобальные перспективы

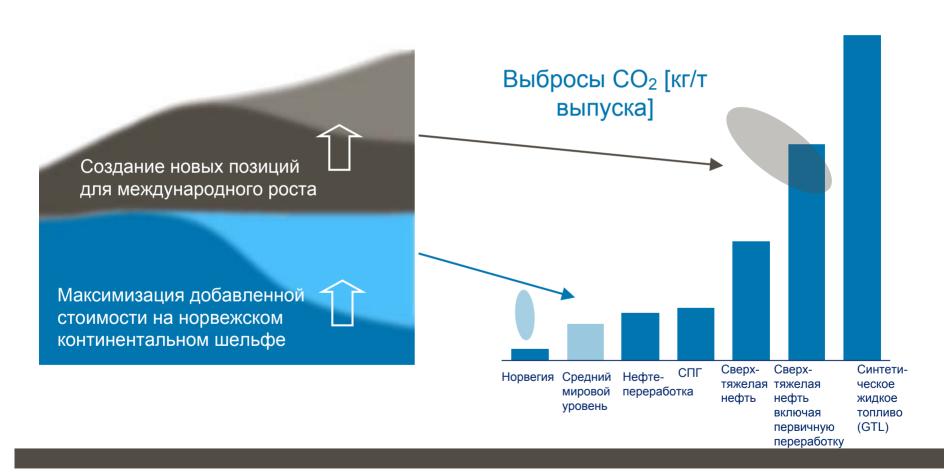
Конференция AEB «Реализация Киотского протокола в России: точка зрения бизнеса», Москва, 29 сентября 2009 г.


Андрей Мухин, Директор по вопросам безопасности, охране здоровья, труда и окружающей среды, StatoilHydro Russia

«Важный вопрос...»

...сбалансированное устойчивое развитие

...и климатические изменения (CO₂ ке/баррель н.э.)



Цифры для StatoilHydro относятся только к операциям на НКШ

Проблемы развития бизнеса StatoilHydro неотделимы от проблем увеличения выбросов парниковых газов

Рост удельных выбросов CO₂ по мере освоения новых сфер деятельности

Принципы StatoilHydro в отношении климатических изменений

Как нефтегазовая компания мы являемся составной частью проблемы – но мы также активно работаем, чтобы стать и составной частью решения этой проблемы за счет:

- Эффективного использования энергии
- Торговли квотами на выбросы
- Улавливания и хранения CO_2 (CCS)
- Расширения использования возобновляемых источников энергии

В долгосрочной перспективе улавливание и хранение углекислого газа (CCS) будет основной инициативой нефтегазовой промышленности в отношении климатических изменений.

В средне- и краткосрочной перспективе эффективным механизмом снижения глобальных выбросов будет торговля квотами.

СНИЖЕНИЕ ЭНЕРГОПОТРЕБЛЕНИЯ

• СОКРАЩЕНИЕ СПРОСА

- БОЛЕЕ ЭФФЕКТИВНОЕ ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
- ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ

ЗАМЕЩЕНИЕ ВИДОВ РАЗНЫХ ТОПЛИВА

- УГОЛЬ
- НЕФТЬ
- ПРИРОДНЫЙ ГАЗ
- БИОМАССА

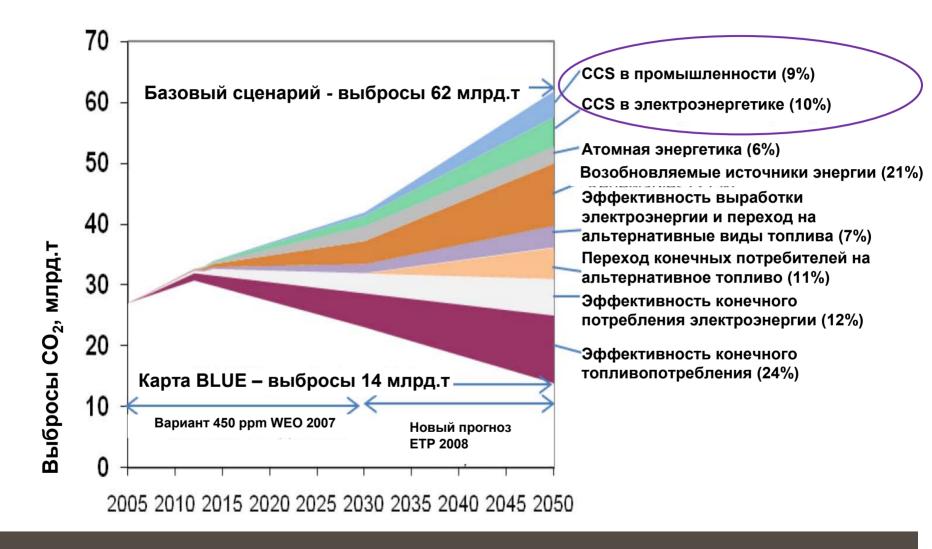
ИНСТРУМЕНТЫ

ДЛЯ СМЯГЧЕНИЯ КЛИМАТИЧНСКИХ ИЗМЕНЕНИЙ

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ

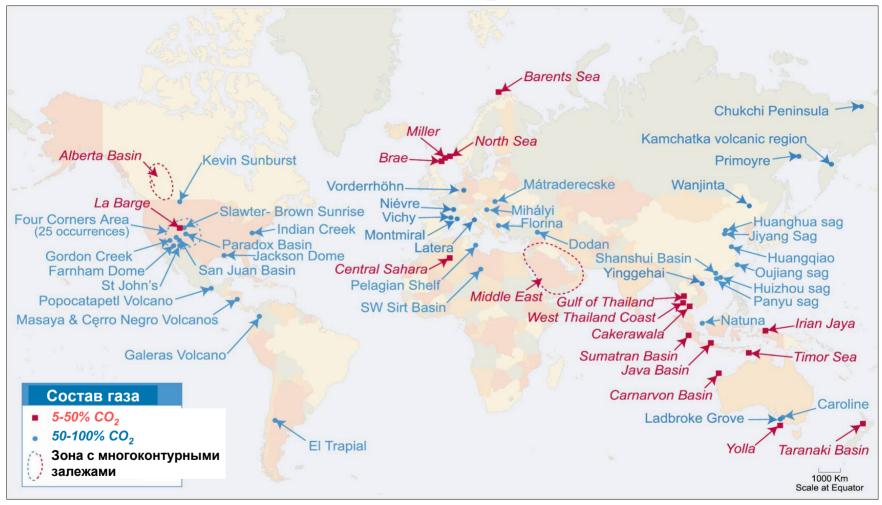
XРАНЕНИЕ CO₂

АТОМНАЯ ЭНЕРГЕТИКА

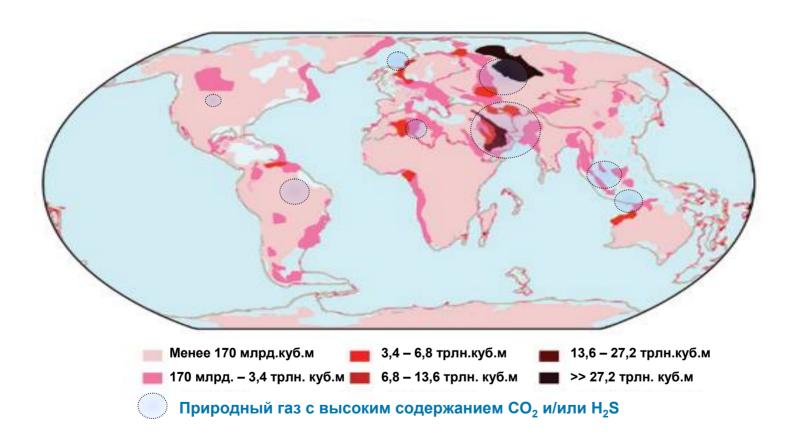

ЭЛЕКТРОЭНЕРГИЯ

БЕЗУГЛЕРОДНЫЕ ЭНЕРГОНОСИТЕЛИ

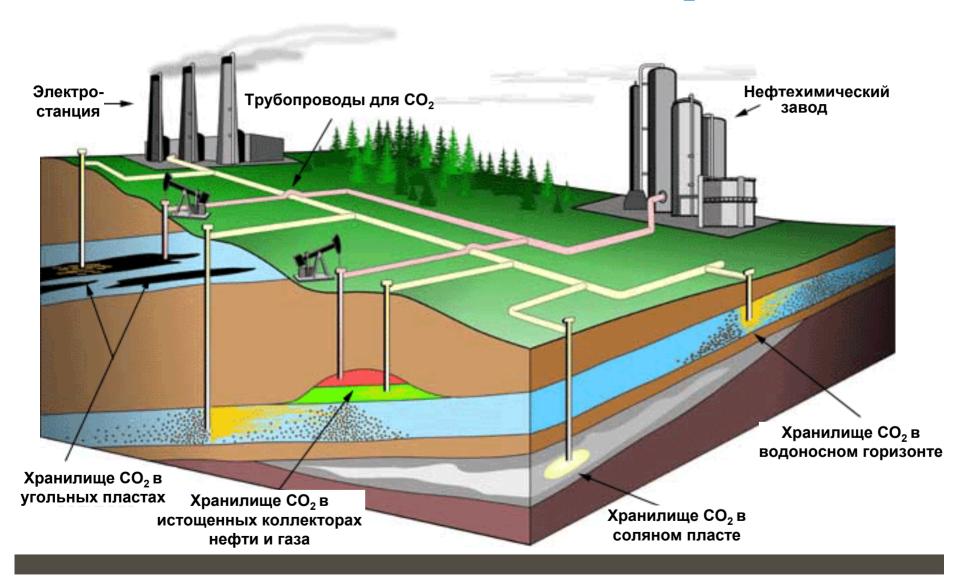
водород


ТЕПЛО

Перспективы МЭА до 2050 года



Природные структуры для подземного хранения CO_2 : пласты, содержащие только CO_2 , и пласты, содержащие



В кратко- и среднесрочной перспективе крупнейшим рынком CCS, ⁸ по-видимому, будет природный газ с высоким содержанием СО2 и повышение нефтеотдачи пластов с закачкой СО₂.

→ Около 40-50 % остающихся запасов газа имеют высокое содержание CO₂/H₂S

Типы хранилищ для СО2

Источник: Природные ресурсы, Канада

Многочисленные мировые и европейские проекты по улавливанию и хранению CO₂ → сколько из них будет реализовано?

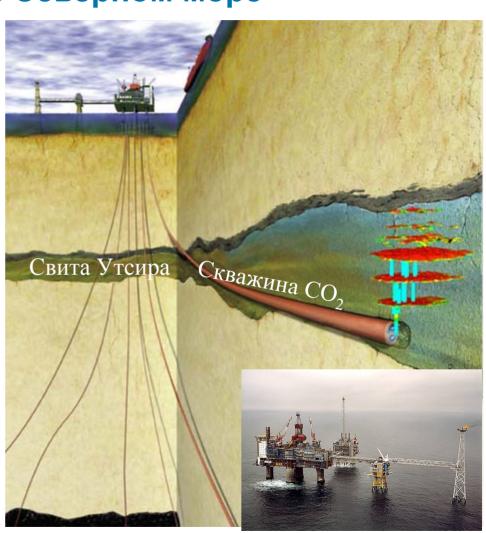
Сегодня функционируют только четыре крупных, а также несколько меньших проектов по улавливанию и хранению CO₂


Слейпнер, Норвегия

Ин-Салах, Алжир

Сновит, Норвегия

Вейбурн , Канада



Проект закачки CO₂ на месторождении Слейпнер в Северном море

- Закачка 1 миллиона тонн CO₂ в год.
- Успешная эксплуатация проекта в течение 12 лет.
- Извлечение СО₂ из природного газа.
- Начало многих научно-исследовательских проектов по безопасности хранения и смежной тематике
- Основа для последующих проектов по улавливанию и хранению СО₂ и база для выработки необходимых условий для дальнейшего развития
- Как это произошло?
 - Кратко → введение в 1991/1992 годах налога на выбросы СО₂
 - Помимо этого традиция технологического развития норвежской нефтегазовой промышленности

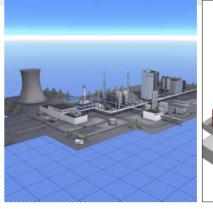
Завод СПГ месторождения Сновит и закачка попутного СО2

- Закачка около 0,7 млн.т CO₂ в год
- Закачка СО₂ ведется с апреля 2008 г.
- Извлечение СО₂ из природного газа
- CO₂ осушается и транспортируется по 152км трубопроводу назад на месторождение
- Как это произошло?
 - Налог на выбросы CO₂ (как и для месторождения Слейпнер)
 - «Комплексное» решение с учетом ряда элементов налогообложения и экономики в полном проекте разработки месторождения

Проект закачки CO₂ на месторождении Ин-Салах в Алжире очистка СО₂

Как это произошло?

- Кратко → за счет внутренней торговой системы компании ВР во время принятия инвестиционного решения
- -Прочих финансовых стимулов не было, но в других условиях для месторождения Ин-Салах мог оказаться применимым механизм «чистого развития» (CDM)



Пилотный проект Castor. Дания

Aker Clean Carbon. Норвегия

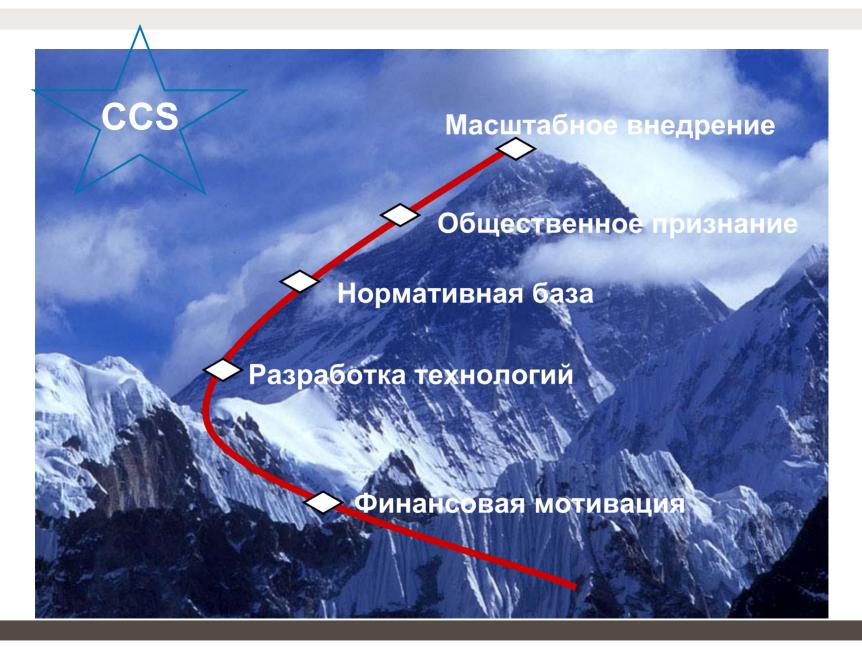
Кислороднотопливный проект Vattenfall. Германия

Полномасштабный проект RWE, Германия


Испытательный центр Mongstad, Норвегия

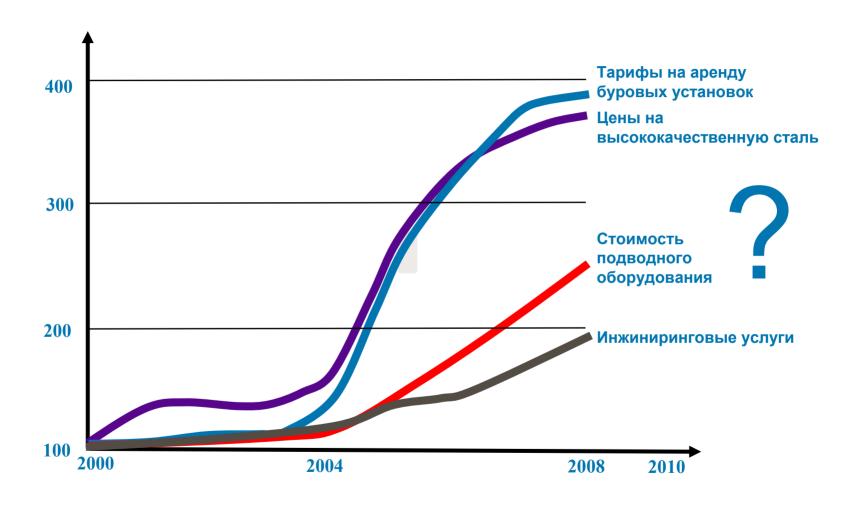
Следующий огромный и трудный шаг – улавливание выбросов СО2 на электростанциях и промышленных предприятиях:

- Намного более сложная проблема по сравнению с улавливанием СО2 из природного газа
 - Объемы, давления, концентрации, потребление энергии, выбросы в атмосферу и т.д.
- Активная работа в странах ЕС и в мире с целью разработки лучших технологий
 - Масса пилотных разработок, несколько демонстрационных установок, многочисленные проекты промышленного масштаба
 - Их значительно больше, чем показано на картинках вверху



Европейский испытательный центр по выбросам ${\rm CO_2}$ плюс полномасштабное улавливание ${\rm CO_2}$

- $^{\circ}$ Эмпирическое правило: затраты на улавливание ${
 m CO}_2$ в отходящих газах могут составлять $^{3}\!4$ от всех расходов на улавливание и хранение углекислого газа.
- Испытательный центр в Монгстаде: Испытания и верификация технологий для применения в промышленном масштабе. Расходы делятся между норвежским правительством и несколькими промышленными партнерами.
- Полномасштабный проект по улавливанию и хранению СО₂ (ТЭЦ + НПЗ), включая трубопровод и хранилище, будет полностью оплачен правительством Норвегии.
- Как это произошло?
 - Движущие силы: Компании Statoil была необходима ТЭЦ вследствие модернизации НПЗ. Норвежскому правительству было необходимо подтверждение его серьезного отношения к климатическим изменениям.
 - Активные переговоры между правительством и компанией Statoil в октябре 2006 г. продолжительностью в 1 неделю.



Проекты StatoilHydro по улавливанию и хранению CO₂

Бизнес-подход к изменениям климата

1,2-2,0Полномасштабный проект Монгстад Мощности по закачке СО₂ (млн.т/год) Испытательный центр Монгстад 0,7 Сновит СПГ 0.6 - 1Ин-Салах «Низко Слейпнер висящие плоды» 2014-2011/12-1996-2004-2008-

Расходы на улавливание и хранение выбросов CO₂ сильно зависят от сегодняшних высоких цен

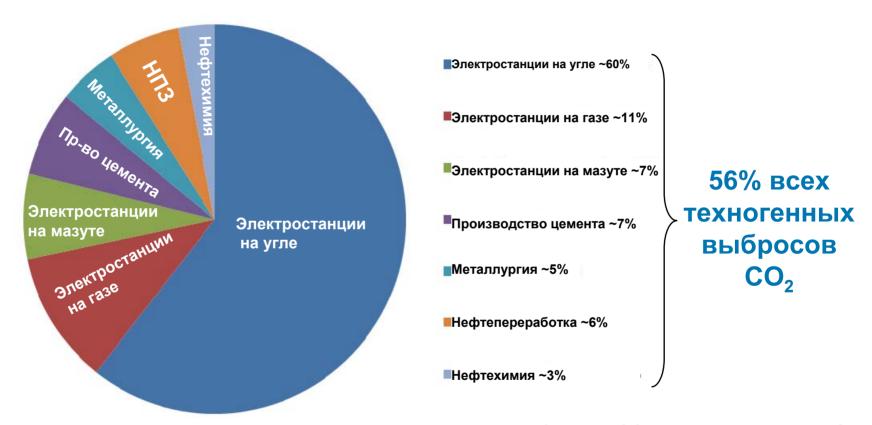
Улавливание и хранение выбросов CO₂ (CCS) - коммерческие перспективы и проблемы

- Затраты на улавливание
- Доверие и общественное признание ССЅ
- Международная правовая база, охватывающая следующие вопросы:

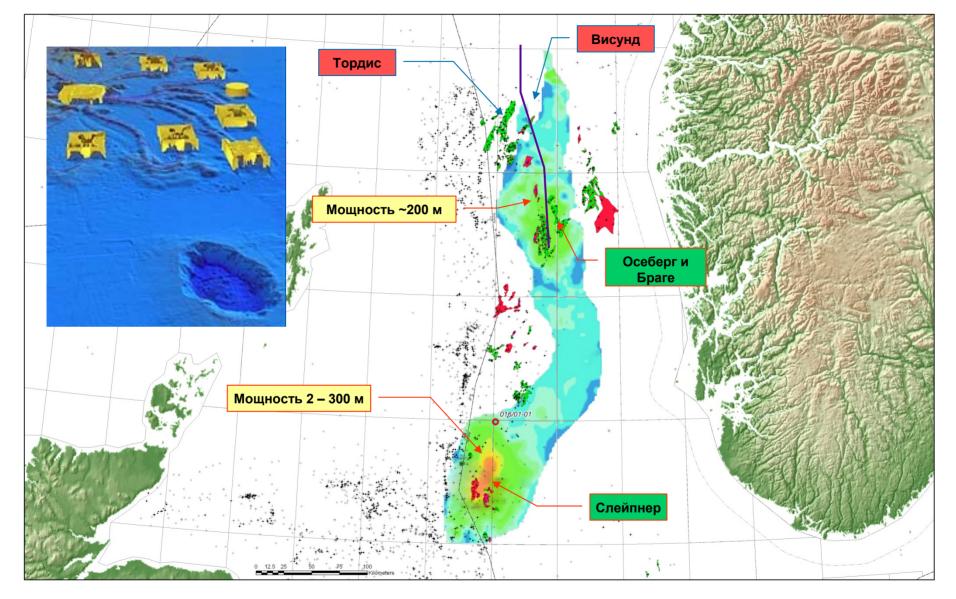
 - ответственность за хранимый CO₂ критерии приемлемости CO₂ для закачки
 - трансграничная транспортировка
 - верификация безопасных мест хранения
- Разработка технологий, позволяющих снизить затраты на улавливание СО
- Коммерческая нормативная база:
 - система лицензирования
 - взаимосвязь с соответствующими сертификационными системами

Заключение

- Ключевой составляющей стратегии действий в ответ на изменения климата является разработка новых технологий
- Технология улавливания и хранения CO₂ (CCS) достаточно отработана и внедрение ее может начаться уже сейчас
- Для ускорения разработок требуются стимулы и смелость
- Хранение CO₂ в геологических структурах предоставляет уникальную возможность значительно снизить объемы выбросов CO₂ в атмосферу
- Перед широкомасштабным внедрением процессов улавливания и хранения CO₂ (CCS) необходимо решить ряд сложных задач (технологии, ОТОСБ, общественное одобрение)



Back-up


Масштаб глобальной проблемы выбросов CO₂

- В промышленности начитывается около 7500 крупных точечных источников выбросов

* Точечные источники с выбросами СО2 свыше 0,1 млн. т/год

Уроки инцидента на месторождении Тордис – закачка воды в пласт

В качестве кандидатов для улавливания и хранения CO₂ (CCS) помимо угля необходимо рассматривать также нефть и газ

